
Designing a Cloud-Based Infrastructure for

Spectrum Sensing: A Case Study for Indoor Spaces

Ayon Chakraborty and Samir R. Das

Computer Science Department, Stony Brook University, Stony Brook, New York 11794, U.S.A.

{aychakrabort, samir}@cs.stonybrook.edu

Abstract—We argue that spectrum sensing on mobile clients
will be both necessary and feasible if we wish to manage the
white space spectrum optimally in indoor spaces. We demonstrate
the necessity with a set of empirical measurements showing the
need for fine grained sensing. We demonstrate the feasibility
by building a spectrum sensing infrastructure that collects
measurements from sensing devices to analyze and better use
spectrum resources. The infrastructure consists of mobile spec-
trum sensors that are built using DTV receiver dongles interfaced
with Android-based mobile devices and a cloud-based central
server to manage such sensing devices. We also show results
about resource consumption (energy, network overhead) involved
in operating such sensors. The vision is ultimately creating a
system where mobile devices perform part-time spectrum sensing
in a coordinated fashion under the control of a central spectrum
manager. We lay out the research challenges based on our initial
prototyping and benchmarking experience.

Keywords-mobile spectrum sensing, white space, dynamic spec-
trum access

I. INTRODUCTION

It is widely anticipated that the use of white space (WS)

spectrum will dominate in indoor spaces [20]. The purported

reason is that almost 70% of all mobile use is indoors [26]

and one of the greatest use of white space is offloading

from licensed cellular bands [20]. A recent measurement

study based on Hong Kong [26] also shows that there is

a significant improvement in availability of TV white space

(TVWS) spectrum indoors relative to outdoors. This provides

more hope for indoor use. In general, there is already some

belief that indoor use could be the only ‘sweet spot’ for

exploiting TVWS [20]. The reason for this is that outdoor

TVWS availability is known to be poor in densely populated

areas [15]. 1 This scenario is not likely to change with the

new white space spectrum beyond the TV bands.2 While the

above observations collectively indicate that the understanding

and using indoor WS should be of critical importance, with

the exception a few recent studies [26] very little investment

has been made to study indoor WS.

However, indoor use brings in challenges in spectrum

management. Several papers suggested that WS networks

should do some form of centralized spectrum management

1A quick look at Spectrum Bridge database [7] at the time of this writing
shows only 0, 3 and 5 TVWS channels available in most locations in New
York City, San Francisco and Chicago, respectively!

2For example, naval radar bands that are being considered for deregula-
tion [20], [10] likely will suffer from similar issues as roughly 40% of US
population lives in coastal shoreline counties [2].

for the secondary devices [24]. Though no clear architecture

has yet emerged we posit that a centrally computed ‘radio

environment map’ (REM) (estimate of power spectral density

at all points in the useful space) is an important tool for

such spectrum management. But computing REM can be

challenging indoors. Empirically-based propagation modeling

is not reliable indoors. Deterministic models like ray tracing

needs high resolution inputs about the indoor environment that

may be hard to obtain in practice. Thus, a measurement-based

approach is likely the only possibility. Such measurements

have indeed been proposed, but only in the APs [24] (assuming

an ‘cellular’ WS architecture). This is generally easy to do as

the APs have abundant power budget and adequate backhaul

to a central spectrum database/manager.

However, as we will demonstrate later that even in a small

cell-like setup AP-only sensing cannot estimate the REM

within the needed degree of accuracy. This is again related

to the vagaries of indoor propagation. The only recourse will

be more granular sensing, perhaps via an additional set of

dedicated spectrum sensors [26]. But this may not be a cost-

effective choice always.

A. Mobile Spectrum Sensing

We propose an alternative where spectrum measurements

are also performed in a coordinated fashion on spectrum

sensors that are either add-on or integrated into mobile de-

vices [17], [22]. These include any mobile device from phone

or tablet to a wearable platform such as glass or watch.

While the general concept of distributed, coordinated spectrum

sensing is hardly new, much of the existing work has been

limited to laboratory grade spectrum analyzers or powerful

SDR-based spectrum sensing [16].

Modern mobile platforms provide an attractive alternative.

Many provide multicore processors and GPUs to provide

enough compute power. They are also everywhere as a signif-

icant and growing fraction of humanity possesses one or more

of these devices. Further, they are often idle. They do lack

appropriate radio interfaces for white spaces at this time. But

obviously they will acquire such interfaces if they are to use

white space spectra. The technical feasibility of mobile-based

spectrum sensing or cognitive radio platforms has already

been demonstrated [17], [22], [11], [19], [28]. Also, while

not directly related to WS, [23] has demonstrated the utility

of client-assisted monitoring of wide-area wireless networks

2016 International Conference on Distributed Computing in Sensor Systems

2325-2944/16 $31.00 © 2016 IEEE

DOI 10.1109/DCOSS.2016.28

17

for improving the operators’ understanding of network perfor-

mance.

B. Challenges

There are, however, many challenges. They fundamentally

center around two issues: (i) architectural design and (ii)

understanding and managing the accuracy vs resource use

tradeoffs:

Architecture: An end-to-end framework must be developed

such that spectrum data will be collected from numerous

sensors and collated at the backend (a central perhaps cloud-

based ‘spectrum manager’) to create the REM. In our case,

REM may need to be represented probabilistically as the

spectrum measurements will at best be samples taken at

discrete points in time that would present a distribution of

measured radio signal power at specific frequencies at that

location.

Accuracy: It is unclear whether inexpensive radios integrated

onto a phone and with small, built-in antenna can perform

sensing with the needed accuracy. Also, due to resource

limitations, the sensing can be sparse in frequency, time and

space, and also the data could be compressed.

Resource: While mobile devices are often idle and may have

ample processing power, they are energy poor. The radio front

end can also have limitations in the sense of tunability and

sampling rate. Thus, spectrum sensing must be controlled by

the central server for optimally exploiting the radio capability

for a given power budget. The cost of network connectivity is

also an issue. The spectrum data may need to be compressed

before transmission or may have to be analyzed partially (e.g.,

the FFT on the I/Q samples can run on the mobile and only

differences are communicated to the server, etc.). Considering

the energy and backhaul costs, the server may need to schedule

sensing tasks on the mobiles carefully.

In this paper, we limit ourselves to only parts of these

challenges. We make the following contributions:

• We develop a prototype platform using commodity devices

– DTV receiver dongle interfaced with an Android-based

mobile device (Figure 3). We also demonstrate a cloud

infrastructure about handling such sensing modules (Sec-

tion III).

• We perform preliminary spectrum sensing measurements to

generate radio environment maps and analyze their accuracy

to show the power of client-assisted sensing (Section IV) in

indoor environments.

• We highlight the resource consumption issues (Section V)

to further demonstrate the practicability of such a system.

II. RELATED WORK

Recent literature focuses on accurate identification of TV

Whitespaces. [26] introduces WISER, a system which iden-

tifies and tracks indoor white spaces in a building, without

requiring user devices to sense the spectrum. Whereas [27]

proposes an architecture where spectrum sensing is performed

in city-wide public transport. But all these works try to search

for available whitespace (i.e., absence of primary signals).

The whitespace channels being known the next logical step

to follow is how best to utilize those channels. To the best

of our knowledge there is no prior work which addresses

the whitespace channel allocation problem and proposes a

system for doing the same. A similar approach as ours is

taken in [23] where client-assisted monitoring of wide-area

wireless networks is done to assist network operators to better

understand performance characteristics.

Recently, there have been several initiatives to build low

power, mobile spectrum sensors [13], [11], [19], [28] pro-

totype. However, the focus of our work is to build a cloud

infrastructure on top and laying out the challenges in doing

so.

III. CLOUD INFRASTRUCTURE FOR SPECTRUM SENSING

One of the main bottlenecks in building such an infrastruc-

ture lies in creating a mobile TVWS sensor. At the current

time, experimental prototyping of a TVWS sensor on a mobile

device is hard. While current generation smartphones have

multiple radios (WiFi, 3G/4G, Bluetooth, NFC, etc) they do

not operate in the TV band. In general, an interface capable of

tuning to arbitrary frequencies in the operating band and obtain

I/Q samples is absent; so we cannot even use another band

as a proxy for TVWS. Past work has considered developing

custom, small form-factor boards with RF front ends, ADC

and FPGA that can be interfaced with the phone [17]. Chip-

level design of the wideband frontend of an SDR receiver has

also been demonstrated [22]. In general, there is a growing

interest in developing micro-SDRs with small form-factor

and energy budget [18], [14]. However, these are research

prototypes and are not widely available.

Instead, we rely on commodity devices to understand the

potential of our techniques. We use a commodity Digital TV

receiver dongle (DTV receiver with an USB interface with

the form factor of a thumb drive) that has a specific chipset

(Realtek RTL2832U demodulator) with the ability to export

I/Q samples [5]. Such dongles can be used as inexpensive

software radio receivers as the demodulator (RTL2832U)

supports a debugging mode where it passes the I/Q samples

directly from the tuner’s ADC to the device. The dongle is

provided with an aerial TV plug and is interfaced to a mobile

device via the USB port. This forms a miniature spectrum

sensor. We have connected a low gain antenna to the dongle.

However, in principle such antennas can be built inside the

phone as past work has shown [17] [22]. In the following,

we describe the hardware prototype we build followed by the

cloud based sensing infrastructure.

A. Mobile TVWS Sensor Hardware Prototype

Smartphone / Tablet: We have used the EzCap Digital

ATSC TV dongle. The dongle uses a Rafael R820t tuner [8]

supporting the ATSC standard. The tuner works with DVB-

T, ISDB-T and DTMB standards as well. Figure 3 shows

our prototype spectrum sensors. The dongle has a USB 2.0

18

(a) RTL Dongle with smartphone (b) RTL Dongle with tablet (c) RTL Dongle with Raspberry-Pi

Fig. 1: Some examples of platform configurations considered in this work.

��������	
� ��������	
�

���
��
�
����
�� ���
���

��
��

�
����������

�
���
��
������
���
�
����
����
��
�
�

�

�� �

���!���
��"����
��� �

���������������

#
����$�%����

����

&'
�

(����
�
#
����$�

�����(����
�
#
����$�

������

����
��"����
��

Fig. 2: A system overview of the prototype mobile spectrum

sensor.

interface and can be interfaced to any mobile device that

supports USB OTG (on-the-go) so that it can host a USB

accessory. For prototyping purpose we used three types of

devices: smartphones, tablets and raspberry-pi.

Raspberry-Pi: The other prototype we build was using

a Raspberry-Pi embedded computer. The Raspberry-Pi was

powered externally and an USB WiFi dongle was attached

to it for providing network connectivity. We kept ourselves

limited to Raspberry-Pi platform only for proof-of-concept,

however other embedded computing platforms like Beagle-

Bone, Panda board etc. are also good candidates for creating

a mobile spectrum sensor prototype.

B. Measurement Infrastructure

In the following we describe different components of our

measurement infrastructure.

Spectrum Data Broker: At the core of our infrastructure

sits the spectrum data broker that facilitates message passing

among different components in the system. The broker uses

MQTT protocol [4] that follows a publish/subscribe messaging

pattern. MQTT being one of the very successful messaging

(a) TV signal detected (b) Potentially white space

Fig. 3: Snapshot of our android sensing client application. The

left figure shows the TV pilot while the right one doesn’t for

two different channels.

protocols in the Internet-of-Things domain was our natural

choice over HTTP. Unlike HTTP where the server needs to

interact with all clients independently, the MQTT server (or

client) can ‘publish’ a message under a certain ‘topic’ and

all MQTT clients who have ‘subscribed’ to that particular

topic receives the message. MQTT has built-in support for

QoS unlike HTTP. HTTP takes up more bandwidth (due to

the text-based nature, headers etc.) than MQTT. Apart from

that MQTT has much less CPU/memory footprint (less energy

hungry) compared to HTTP. Such features motivate us to adopt

MQTT protocol in our platform. We use HiveMQ [3] as our

spectrum data broker.

Sensing Application: The Open Source Mobile Communi-

cations (Osmocom) [5] has a community-supported project

developing software support for using DTV dongles as above

as functioning SDR receivers. We ported the existing Linux

libraries and drivers for such dongles to the Android and the

Raspbian platform.

The application runs on the mobile spectrum sensor. It uses

a MQTT client service that subscribes to a topic: ‘scan’.

All spectrum sensing requests that are sent (by the sensing

19

�����
���	
�

��
����

�
������
���
���
�

����������
�������	�
��� �������	�
���

������	��

���	����

Sensing Devices SpecSense Server and Database Secondary Device

��������������	�

��������	�

���
�

�����
���
�����

Fig. 4: Software architecture of our mobile spectrum sensing infrastructure. The secondary device can be a enodeB or an WiFi

access-point that asks for a white space channel from the system.

scheduler) under the ‘scan’ topic are received by this client and

a scan is issued. The message contains information about the

scan operation like the channel number, sample rate, sensing

duration and the number of samples. The application obtains

the raw I/Q samples from the sensor hardware, performs an

FFT operation on it and subsequently computes the power

spectral density (PSD) over the sensed channel. It then pub-

lishes the scan results under the topic ‘scan results’ and the

sensing scheduler that subscribes to this topic receives it. The

scan results are also accompanied by a location stamp and the

battery state of the mobile device. Additionally the application

periodically updates the scheduler with its location and battery

power.

Sensing Scheduler: This issues the scan requests to the mobile

spectrum sensors. Currently we our system supports three

types of scheduling algorithms.

Random: We select the sensors randomly and assign a random

DTV channel (14 – 51) for it to scan.

Geographical Loadbalancing: We partition the entire area into

discrete grids and try to maximize the number of grids covered

by sensors that are scheduled to scan.

Frequency Loadbalancing: In this case we try to divide the

sensing tasks based on the channel occupancy patterns. Some

channels change occupancy too often and needs frequent

scanning and the others require less frequent scanning.

In all such cases we try to improve the cost–performance

tradeoffs in a large deployment setting.

Spectrum Database: The scheduler enters the information

in a SQL database. We also provide a web front-end and

data analytics engine over the database. The details are not

provided here for brevity. The current deployment spans across

our university campus (≈ 6 sq. km) with ≈10 mobile spectrum

sensor nodes.

We demonstrate the feasibility of building a mobile spec-

trum sensor combined with a cloud infrastructure to house

such sensors and collect related sensing data. In the following

we show an important indoor use case of channel selection

where such a system can play an important role.

IV. EXPERIMENTS

In this section our goal is to provide an empirical demon-

stration of the power of client-assisted sensing in the indoor

context. To do this, we will perform extensive indoor spectrum

sensing experiments followed by performance analysis.

A. Experimental Setup

Emulating Small Cells: Our setup emulates indoor small

cells operating in UHF frequencies. Since our prototype spec-

trum sensor doesn’t have a UHF transmit interface, we use

Ubiquity XR7 wireless cards [9] (operating in 760-780MHz

band) as secondary devices 3. These cards are mounted on

embedded processor boards (Avilla GW2348 [1]). 14 such

nodes are deployed around our department building (in the

same floor) covering approximately an area of 300ft x 150ft.

For the purpose of demonstration we limit ourselves to 2

channels (each 5MHz wide, henceforth we call them channels

X and Y) and configure the nodes to operate in either of

them. We make sure that no other interfering signal is present

in those channels. The center frequencies of X and Y are

kept 20 MHz apart to prevent adjacent channel interference

influencing the results. 4 nodes are configured such that they

mimic WS APs and drive their own ‘small cells’. Two of these

APs operate in channel X while the other two in channel Y.

Additionally, each AP node is also equipped with a regular

3The 700MHz band (Channels 52-69) is not a part of the current DTV
spectrum, although such was the case before this band was auctioned in 2008.
See: http://fjallfoss.fcc.gov/edocs public/attachmatch/DA-07-3415A1.pdf

20

802.11 interface in the 2.4 GHz band that connects to a Central

Server. This serves as the backhaul and is used to communicate

control instructions (channel, bandwidth, transmit power etc)

to the AP. The rest of the nodes (10 of them) mimic clients

and connect to the 4 APs. We created a constant UDP traffic

at 6Mbps between the clients and the APs. The output power

of the antenna in the clients is kept at 15mW, while that in the

AP is 27mW. We do this to introduce secondary interference

in the cells.

Sensing Probes: The node (both the whitespace clients and

APs) are not equipped with hardware capability to sense

spectrum by itself. We use our sensor prototype to sense the

spectrum on its behalf, keeping it at the same location with the

node. Such an arrangement (node combined with the sensor)

augments the sensing functionality of the node. The sensors

monitor both the channels and report the sensed data (in form

of a 1024-bin FFT) to the central server. The FFT data is

location stamped based on the node-id, and it is assumed that

the server is aware of the location of the nodes with respect

to a reference coordinate system.

Central Server: As described before, the central server

collects location-stamped sensing data from the sensors and

generates the REMs for both channels separately. Next, it

uses these two REMs to identify the channel that is best for

each AP. Clearly, there could be many strategies for channel

selection. In the current system we consider the average

interference level per cell for a given channel as a metric

to identify the best channel. In this setup, we do not have

dynamic/mobile secondaries so the channel allocation does not

change with time. We aim to take it up as a future work. In case

of dynamically changing REMs, the central server instructs the

APs to switch channels.

REM Generation: Recently, there has been several studies in

employing standard methods of spatial statistics in mapping

the radio environment (see, e.g., [25]). Empirical measurement

based work has also been done using similar approaches [21].

We take the same basic approach (Ordinary Kriging) by

assuming the radio signal strength at each frequency to be

a random field in 2D that is sampled at some random (spatial)

intervals. In this experiment our goal is to create REMs for

different number of sensing locations.

B. Results

Recall that our testbed has four APs and ten clients oper-

ating at two possible UHF channels. We perform spectrum

sensing (for both channels) at all nodes and study how a

sparser sensing would impact REM, channel selection and

overall performance.

REM Accuracy: Here, we study how the REM’s accuracy

is impacted by sparser sensing locations. First, we sense the

spectrum at all 14 locations where a node is present and

compute the REM. Of course, this is the best we can do in

terms of client assisted sensing and hence we consider this

as representing ground truth. Next we decrease the number of

sensing locations and create a REM for each instance. Figure 5

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error in signal strength estimation (dB)

P
ro

ba
bi

lit
y

Number of Sensing Locations
12
10
8
7
6
5
4 (AP−only)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error in signal strength estimation (dB)

P
ro

ba
bi

lit
y

Number of Sensing Locations
12
10
8
7
6
5
4 (AP−only)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error in signal strength estimation (dB)

P
ro

ba
bi

lit
y

Number of Sensing Locations
12
10
8
7
6
5
4 (AP−only)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error in signal strength estimation (dB)

P
ro

ba
bi

lit
y

Number of Sensing Locations
12
10
8
7
6
5
4 (AP−only)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error in signal strength estimation (dB)

P
ro

ba
bi

lit
y

Number of Sensing Locations
12
10
8
7
6
5
4 (AP−only)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error in signal strength estimation (dB)

P
ro

ba
bi

lit
y

Number of Sensing Locations
12
10
8
7
6
5
4 (AP−only)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Error in signal strength estimation (dB)

P
ro

ba
bi

lit
y

Number of Sensing Locations
12
10
8
7
6
5
4 (AP−only)

Fig. 6: CDFs of the estimation errors in the REMs with

different number of sensing clients.

shows the REM generated by AP-only sensing compared to

the ground truth. For a given point in the REM, the absolute

difference in the estimated signal strength and the ground truth

is the estimation error, which is calculated for all gridpoints

on a 300x150 grid (i.e., each grid cell is 1ft x 1ft) overlaid on

the REM. Figure 6 shows the CDF of REM estimation errors

for different number of sensing locations. Note that AP-only

sensing provides a median error of approximately 12 dB. This

obviously represents a significant estimation error. A visual

representation of this is in Figure 5 that shows the resultant

REMs as heat maps.

As expected, error improves with more clients performing

the sensing (Figure 6) falling within few dBs of median error

with 8+ clients sensing. However, some parts of the REM (top

20% in the plot) remain fairly inaccurate even with 10 clients

sensing.

Channel Choice: Estimation errors of REM is just one

part of the issue. What essentially matters is whether a poor

estimation leads to a poor choice of channels that impacts

performance, For example, in Figure 5 for about 25% cases

on average the best channel as derived from the Figure 5(a),

i.e., AP-only disagrees from that derived from 5(b), i.e.,

when all clients are sensing. Interestingly these 25% locations

are clustered among a handful regions. Furthermore, our

experiments represent one of the many scenarios possible in

indoor environments. Situations can be more complicated with

mobile secondaries with variable transmit powers. Also, larger

deployments, say across multiple floors/campus-wide areas,

such inaccuracies can be more significant.

Performance: It is also interesting to quantify the loss in

performance due to the choice of an inappropriate channel.

We do the following experiment in order to evaluate such loss.

For locations where the choice of best channel differs between

the two REMs (based on AP-only and Client-assisted sensing

respectively), we introduce a transmitter-receiver pair and

operate them in both channels consecutively. The transmitter

21

●

●

●
●

−25

−20

−15

−10

−5

●

●

●
●

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(a) REM based on AP-only sensing (two channels).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−35

−30

−25

−20

−15

−10

−5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−40

−30

−20

−10

0

(b) REM based on Client-assisted sensing (two channels).

Fig. 5: REM based on AP-only and client assisted sensing are shown for both the channels. The left-side plots correspond to

channel X while that on the right-side correspond to channel Y. The dots in the figure represent sensing locations.

sends a constant bit-rate UDP traffic at 6 Mbps and we

measure the observed throughput and RTT (ping latency) at

the receiver end. We repeat the same experiment for the two

channels. Figure 7 compares the CDFs of throughputs and

RTT (measured every second for approximately 10 minutes)

for a typical such location. Note that the median value for

throughput and RTT differs by more than 50% and 100%

respectively. Across different such locations we hve observe a

similar trend.

C. Outdoor Case

While we have concentrated specifically indoors and sec-

ondary sensing in this work, the general approach is obviously

applicable outdoors and/or primary sensing as well. Recent

measurement experiments [26], [27] have shown that the

spectrum databases are way too conservative in identifying

WS. There is already some interest in improving inaccurate

spectrum databases by augmenting it with actual spectrum

sensing measurements. For example, [27] takes a wardriving

approach where such sensing is performed in city-wide public

transport. While the technology for doing this is immediately

feasible, this approach is limited in scope as it can provide

measurements only from certain limited areas. It remains to be

see whether this can adequately serve the purpose of identify-

ing WS in locations where people frequent. On the other hand,

the proposed approach of client-assisted sensing can provide

unlimited options regarding measurement locations. We have

reported preliminary outdoor measurements using the same

platform in [13].

No. of Bins Time/FFT (ms) Energy/FFT (mJ)

256 11.3 5.73

512 26.4 13.32

1K 60.2 30.18

2K 139.8 70.6

4K 334 167.3

TABLE I: Computation time and energy overheads for differ-

ent FFT bin sizes according to PowerTutor measurements.

V. RESOURCE USAGE

Much of the client-assisted spectrum sensing is to be done

on resource constrained mobile devices (e.g., smartphones,

tablets, wearable smart devices such as glass or watch). A

natural question that arises is how well the system performs

in terms of resource usage. In this section we address the

different components related to resource (energy, CPU, net-

work) consumption in the mobile client. At the core of such

mobile client sits an application which receives scheduling

instructions from the central server, issues scan instruction

to the radio, computes the FFT based on the I/Q samples

and communicates back the sensed data as necessary. Broadly

there are three different components associated with such a

system, viz., a) Sensing (powering the radio and fetching I/Q

samples), b) Computation (primarily FFT computation based

on the samples), and c) Communication (uploading the sensed

data to the spectrum manager and receiving various control

information, e.g., related to scheduling).

Sensing: We have measured the current flowing into the

dongle connected to the tablet’s USB OTG bus at 5V. The

current draw is measured in two states: Idle (when the dongle

22

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Throughput (Mbps)

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Throughput (Mbps)

P
ro

ba
bi

lit
y

Channel Decision
Client−assisted
AP−only

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ping Latency (ms)

P
ro

ba
bi

lit
y

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ping Latency (ms)

P
ro

ba
bi

lit
y

Channel Decision
Client−assisted
AP−only

Fig. 7: CDFs of throughput and ping latencies at a given

location for using the best channel chosen by AP-only sensing

versus Client-assisted sensing.

is attached to the tablet, but does not perform scanning) and

Scanning (the dongle is actively sensing spectrum). We have

not noticed a very strong sensitivity to the sampling rate, but

the reported measurements are for 2 Msps sampling rate only.

On an average, the idle state draws about 90 mA while 160 mA

is drawn in the scanning state. The maximum variation of the

measured current value in in either case is within 5mA. Thus,

the power consumed by the dongle in scanning state is about

800 mW. We further note that the idle state power consumption

can be completely eliminated by powering off the USB bus

from the application software.

Computation: The application software that controls the

client’s system has a computational overhead. The application

accomplishes several tasks including controlling the dongle,

fetching samples, FFT computation and some intelligent de-

cision making based on the scan results. Among these tasks,

FFT computation is the most CPU intensive. So, we evaluate

its energy overhead on our prototype tablet-based platform

described before. The PowerTutor App [6] is used to profile

the CPU energy consumption application for different FFT bin

sizes. The results are shown in Table I. Summarizing from the

table, FFT consumes roughly 500mW of power regardless of

the bin size. The CPU load for the application while it is

actively scanning and performing the FFT on the samples is

approximately 42%.

Communication: The communication interface in the

mobile client has a two fold use. First, the central server

probes the client to schedule a scan operation. Second, the

client conveys the scan results (FFT) to the server. Note that

the scan result is only a few KB data. Additionally, not every

scan result has to be communicated, i.e., communicate only if

the scan results differ by a predetermined threshold. Currently

our prototype uses the WiFi interface to communicate the scan

results to the server.

To provide the reader with some calibration we review

how this energy usage compares with typical smartphone

applications. A recent study [12] has performed a suite of

benchmark measurements for typical power draw for different

activities (e.g., phone call, web browsing, video etc.). For

example, web browsing can consume around 500 mW while

phone call and video consume approximately 800 mW and

500 mW, respectively. Again these measurements discount

the screen backlight which alone consumes several 100s of

mW (depending on screen size, brightness and technology).

In comparison, assuming one FFT operation (1K bin size) per

second and associated sensing (1K I/Q samples) and backhaul

communication (over WiFi) our prototype is estimated to

consume less than 1000 mW on average for spectrum sensing.

(This analysis uses the measurements above. The energy

needed for WiFi communication is separately estimated for

the same device.) This is not significantly higher than typical

applications given that there is no added energy cost for the

screen.

Also note that a major component of the energy was spent

in powering the sensor’s hardware. With the availability of WS

interfaces in secondary devices, we presume that low power

on-chip radios will be integrated with the device which will

reduce energy usage. Further, various compression techniques

can be used for the communication part, e.g., only differences

can be communicated and that too only when they are larger

than a threshold, etc.

Scheduling Sensing Tasks: It is clear that continuous

sensing on all clients at all times is not resource efficient. This

gives rise to a significant task scheduling problem that we will

pursue in our future work. The idea is to estimate the ‘utility’

(in terms improvement in REM accuracy) coming from one

unit of sensing on a specific client. If this utility is significant

relative to the resource ‘cost,’ this client can be tasked for

sensing. The resource cost is dependent on the ‘context’ of the

client that includes, among other things, the remaining battery

power. The information gain is tied to the the location of the

client, whether the client is mobile, etc. that are part of the

context as well. Historical information can be mined by the

server to ascertain the utility of sensing. The sensing can be

broken down further in frequency dimension. For example, it

23

may be more beneficial for certain clients to sense only certain

portions of the WS spectrum.

VI. CONCLUSION AND FUTURE WORK

In this work we have argued that spectrum sensing on

mobile clients will be both necessary and feasible if we wish

to manage the WS spectrum optimally in indoor spaces. It

is necessary as indoor propagation environment is complex

enough that modeling-based methods will not be adequate. On

the other hand, using a DTV-based dongle as a proxy for a

spectrum sensor we demonstrated the feasibility of spectrum

sensing on an Android mobile platform and a Raspberry-Pi

device. Second, we built a scalable and robust system to collect

data from such sensors and implemented several scheduling

algorithms to collect such data. Initial validation experiments

show the power of client-assisted spectrum sensing in getting

an accurate rendition of the radio environment that in turn

impacts performance. In this work, we have laid out the

vision of such systems, presented a prototype implementation

and performed preliminary validation experiments. The entire

gamut of challenges mentioned in the paper forms parts of

our ongoing and future work. In particular, we are pursuing

developing sophisticated algorithms to address the scheduling

scanning task scheduling problem by means of crowdsourcing

and realizing it in a real system.

REFERENCES

[1] Avila GW2348-4. http://site.microcom.us/gw2348-4ds1-3.pdf.
[2] Coastal Population. http://coastalchallenges.com/2010/01/31/

un-atlas-60-of-us-live-in-the-coastal-areas/.
[3] HiveMQ Enterprise MQTT Broker. http://www.hivemq.com/.
[4] MQTT Protocol. http://mqtt.org/.
[5] The open source mobile communications (Osmocom), SDR project.

http://sdr.osmocom.org/.
[6] PowerTutor App. http://ziyang.eecs.umich.edu/projects/powertutor/.
[7] Spectrum Bridge website. http://spectrumbridge.com.
[8] Terrestrial DTV silicon tuner. Rafael Microelectronics, Inc. http://www.

rafaelmicro.com/downloads/R820T.pdf.
[9] Ubiquity XR7 Cards. https://dl.ubnt.com/xr7 datasheet.pdf.

[10] Second report and order and memorandum opinion and order in the
matter of unlicensed operation in the TV broadcast bands. FCC ET
Docket 08-260, Nov. 2008.

[11] R. Calvo-Palomino, D. Pfammatter, D. Giustiniano, and V. Lenders. A
low-cost sensor platform for large-scale wideband spectrum monitoring.
In Proceedings of the 14th International Conference on Information

Processing in Sensor Networks, pages 396–397. ACM, 2015.
[12] A. Carroll and G. Heiser. An analysis of power consumption in a

smartphone. In In USENIX, 2010.
[13] A. Chakraborty, S. R. Das, and M. Buddhikot. Radio environment

mapping with mobile devices in the TV white space. In In Proc. ACM
Mobicom, (Poster), 2013.

[14] P. Dutta, Y.-S. Kuo, A. Ledeczi, T. Schmid, and P. Volgyesi. Putting the
software radio on a low-calorie diet. In Proc. ACM HotNets, 2010.

[15] K. Harrison, S. M. Mishra, and A. Sahai. How much white-space
capacity is there? In Proc. IEEE DySpan Symp., 2010.

[16] A. Iyer, K. Chintalapudi, V. Navda, R. Ramjee, V. N. Padmanabhan,
and C. R. Murthy. Specnet: Spectrum sensing sans frontieres. In 8th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2011.
[17] S. Kallioinen, M. Vaarakangas, P. Hui, J. Ollikainen, I. Teikari, A. Parssi-

nen, V. Turunen, M. Kosunen, and J. Ryynanen. Multi-mode, multi-band
spectrum sensor for cognitive radios embedded to a mobile phone. In
Proc. ICST CROWNCOM Conf., 2011.

[18] Y.-S. Kuo, P. Pannuto, T. Schmid, and P. Dutta. Reconfiguring the
software radio to improve power, price, and portability. In Proc. ACM

SenSys, 2012.

[19] A. Nika, Z. Zhang, X. Zhou, B. Y. Zhao, and H. Zheng. Towards com-
moditized real-time spectrum monitoring. In Proc. ACM HotWireless,
2014.

[20] M. e. a. Petrova. Methods and tools for estimating spectrum availability:
case of single secondary user. Technical report, Ericcson AB, UKIM,
KTH, RWTH, Aalto, 2012.

[21] C. Phillips, M. Ton, D. Sicker, and D. Grunwald. Practical radio
environment mapping with geostatistics. In Proc. IEEE DySpan Symp.,
2012.

[22] S. Pollin, L. Hollevoet, F. Naessens, P. Van Wesemael, A. Dejonghe, and
L. Van der Perre. Versatile sensing for mobile devices: cost, performance
and hardware prototypes. In Proc. 3rd ACM workshop on Cognitive

radio networks, 2011.
[23] S. Sen, J. Yoon, J. Hare, J. Ormont, and S. Banerjee. Can they hear

me now?: a case for a client-assisted approach to monitoring wide-area
wireless networks. In Proc. ACM IMC, pages 99–116. ACM, 2011.

[24] S. Sen, T. Zhang, M. M. Buddhikot, S. Banerjee, D. Samardzija,
and S. Walker. A dual technology femto cell architecture for robust
communication using whitespaces. In Proc. IEEE DySPAN, pages 242–
253. IEEE, 2012.

[25] M. Wellens, J. Riihijarvi, M. Gordziel, and P. Mahonen. Spatial statistics
of spectrum usage: From measurements to spectrum models. In Proc.

IEEE ICC, 2009.
[26] X. Ying, J. Zhang, L. Yan, G. Zhang, M. Chenanant, and R. Chandra.

Exploring indoor white spaces in metropolises. In Proc. ACM MobiCom,
2013.

[27] T. Zhang and S. Banerjee. A Vehicle-based Measurement Framework for
Enhancing Whitespace Spectrum Databases. In Proc. ACM MobiCom,
2014.

[28] T. Zhang, A. Patro, N. Leng, and S. Banerjee. A wireless spectrum
analyzer in your pocket. In Proc. ACM HotMobile, 2015.

24

